SE (sem W) EXT((Cq)

Control Tyster Q.P. Code: 546202

(3 Hours)

Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- Answer any four out of remaining six questions.
- Figures to the right indicate full marks.
- Assume suitable data if necessary.
- Answer the following:-

- Explain the concept of relative stability.
- What do you mean by frequency domain analysis and explain the frequency domain performance indices.
- Find out the T.F. of the given network. (c)

The forward path gain of a system is 2.5 and Pole-zero configuration of the system is shown below, find the overall transfer function and type of the system for unity feedback.

(a) Reduce the block diagrw:n and obtain its transfer function.

TURN OVER

Draw the corresponding signal flow graph of given block diagram and find $\frac{C(s)}{R(s)}$ 10

(a) State and prove properties of state transision matrix and check controllability and observability for the system.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 6 & 5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \mathbf{u}$$

$$y = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix} x$$

(b) A unity feedback system has -

$$G(s) = \frac{40(s+2)}{s(s+1)(s+4)}$$

- Determine: (i) Type of the system
 - All error coefficbrlts
 - (iii) Error for ramp!nput with magnitude 4.

(a) Discuss the stability of the following systems fer given characteristic equation 4. using Routh-Hurwitz criterion.

- (i) $s^6 + 4s^5 + 3s^4 \cdot 16s^2 64s 48 = 0$
- (ii) $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$

(b) A feedback comrol system has an open-loop transfer function.

G(S) =
$$\frac{K}{S(S+3)(S^2+2S+2)}$$

Find the root-locus as $k \rightarrow 0$ to ∞

10

10

SE (sem) IN EXTE

Q.P. Code: 546202

10

10

20

3

5. (a) For a particular unity feedback system,

 $G(S) = \frac{242(s-5)}{s(s-1)(s^2-5x-121)}$

Sketch the Bode plot and find W_{gc} , W_{pc} , G.M., P.M. and comment on stability.

(b) For a certain control system

 $G(s).H(s) = \frac{K}{s(s+2)(s+10)}$

Sketch the Nyquist plot and hence calculate the range of K for stability.

- 6. (a) Explain the frequency domain specifications.
 - (b) Explain the concept of Neuro-Fuzzy adaptive control system.
 - (c) Write short note on: Steady state errors in feed back control system and their types.